
Fully Self-Supervised Learning of an Arm Model
Martin V. Butz and Armin Gufler and Konstantin Schmid and Fabian Schrodt

Cognitive Modeling, Department of Computer Science,
Faculty of Science, Eberhard Karls University of Tübingen,

Sand 14, 72076 Tübingen, Germany
martin.butz@uni-tuebingen.de; armin.gufler@student.uni-tuebingen.de;

konstantin.schmid@tum.de; FSchrodt@gmx.de

Abstract
Performing a mere infinite number of different
movements in our everyday life happens mostly
in an automatic and unconscious way, requir-
ing hardly any attention. One necessary require-
ment for generating different movements depen-
dent on the current circumstances is knowledge
about redundant behavioral alternatives and the
capability to flexibly choose the current best
one. In this paper, we evaluate an architecture
that learns to represent such behavioral alterna-
tives in the form of a modular body model from
scratch. Moreover, the architecture is able to se-
lectively choose between the behavioral alterna-
tives, yielding kinematic control commands. The
proposed architecture combines (temporal) Heb-
bian learning mechanisms for learning the body
model with model-based reinforcement learning
techniques for controlling the body. We eval-
uate the current system capabilities, comparing
several configurations and parameter dependen-
cies. Our results show that the architecture can
robustly learn a highly flexible arm control sys-
tem.

1 Introduction
Nicolai Bernstein has called behavior that is extremely flex-
ible and adaptive dexterous behavior [Bernstein, 1967]. A
key ingredient to succeed in the generation of dexterous
behavior is (i) knowledge about the redundant behavioral
interaction alternatives and (ii) the capability to flexibly
choose between these alternatives task-dependently on the
fly.

Few learning models so far have focused on utilizing re-
dundant behavioral capabilities for generating flexible be-
havior. On the other hand, a huge number of learning ar-
chitectures exist that learn to coordinate an arm without
exploiting redundancy. Traditional Reinforcement learning
(RL) algorithms [Berthier et al., 2005] and various forms of
policy gradients have been used [Peters and Schaal, 2008;
Sigaud and Peters, 2010]. Also other direct learning meth-
ods have succeeded in controlling robot arms, such as di-
rect inverse modeling approaches [Kuperstein, 1988] or
resolved motion rate control and distal supervised learn-
ing [Whitney, 1969; Jordan and Rumelhart, 1992], each of
which resolves redundancy during learning.

Here we focus on the SURE REACH model [Butz et al.,
2007; Herbort and Butz, 2007], which is a sensorimotor un-
supervised learning model that learns about the redundancy

of a body and resolves this redundancy on the fly once the
current goal and constraints are given. The model repre-
sents the end-effector location (i.e. location of the hand)
in a task space and, additionally, the arm constellation (i.e.
joint angles) in a posture space. Previously, hard-encoded
population codes were used to cover both spaces by means
of uniform neural grids. Hebbian and temporal Hebbian
learning mechanisms were used to learn the (redundant) in-
verse kinematic mappings from task space to posture space.
Model-based RL within posture space was used to execute
dexterous, goal-directed behavior. Both, location goals or
posture goals can be pursued, while potentially avoiding
obstacles and considering additional task constraints. It
was also shown that the model is able to anticipate sub-
sequent task goals and consequently to incorporate those
into the current behavior optimization [Herbort and Butz,
2007]. Moreover, SURE REACH is able to incorporate un-
certainties in its goal choice [Herbort et al., 2007]. In sum,
it has been shown that SURE REACH is able to generate
highly dexterous behavior.

Although SURE REACH proved to be a useful model
of dexterous human arm control, two challenges remained.
First, the neural representation in joint space scales hyper-
exponentially with the degrees of freedom controlled, so
that a seven degree of freedom arm cannot be modeled with
sufficient accuracy. Second, the neural population codes
were pre-wired and not learned. While the first issue has
been addressed by modularizing SURE REACH, separat-
ing the posture space into individual joint spaces [Ehren-
feld and Butz, 2013], the second issue remained open.
Thus, we developed a model that also learns the neural
population codes. In the following we explain and eval-
uate this system, which is able to learn a model of an arm
with three degrees of freedom (3-DOF) in two-dimensional
(2D) space from scratch.

2 Arm Model Overview
Using kinematic motor commands a 3-DOF 2D arm is sim-
ulated. The simulation provides angles and end-effector lo-
cation signals to the learner and is able to execute kinematic
motor commands (small angular changes), respecting joint
and torque constraints and adding some noise. Fig. 1 gives
an overview over the implemented architecture.

2.1 Learning of a Kinematic Arm
Representation

In contrast to SURE REACH, the arm space representa-
tions are learned using growing, self-organizing neural net-
work techniques. In particular, we use the Time Growing
Neural Gas (TGNG) algorithm [Butz et al., 2010]. TGNG



Figure 1: Overview of the arm model

grows neurons on demand, given the current sensory input
differs more from the closest neuron than a threshold, spec-
ified by parameter θ. Moreover, TGNG grows neural con-
nections between neurons that were the closest neurons in
temporal succession. The connections are associated with
a motor code that approximates the average motor com-
mand executed when traversing this connection. TGNG is
used to learn neural representations of the task space given
(x,y) locations of the end-effector, elbow, and wrist, and
of the posture space given 3D angular vectors. Concretely,
learning is achieved by a random walk, executing random
arm movements and learning from the consequences. In
this way, all accessible locations in the posture and task
spaces will be observed, so that neural population codes
can be distributed across the respective spaces by means of
TGNG.

The second key component of the architecture is the
mapping between task and posture spaces. Similar to
SURE REACH, we use a Hebbian learning mechanism
[Carpenter and Grossberg, 1991] for learning the inverse
kinematic mappings. More details about this learning pro-
cess are provided below.

2.2 Goal Directed Behavior
The final central feature of the system is its ability to be-
have in a goal directed manner. Either a target in location
space can be specified or a target in posture space. Pursu-
ing a particular posture is rather easy: in this case, first, a
posture goal activates the closest neurons in posture space.
Next, this goal activity is propagated backwards through-
out the posture space by means of model-based RL [Sutton
and Barto, 1998]. Finally, control is invoked by deduc-
ing the neuron in posture space closest to the current arm
posture, extracting the connection to the most strongly ac-
tivated neighboring neuron, and executing the motor code
that is associated with the neural connection. Given a well-
connected network of neurons, behavior is guaranteed to
reach the goal-activated neuron. When pursuing a goal lo-
cation, however, this goal location first activates the closest

neurons in the corresponding task space. Next, this activa-
tion is projected into the posture space by the inverse kine-
matic connection matrix (established by the Hebbian learn-
ing mechanism) between task space and posture space. The
resulting goal manifold in posture space is then propagated
throughout posture space and control is invoked as before.

To get more specific, we use the following notation:
nodes of a neural network are denoted by small letters, P
denotes the set of all posture space neurons, and L the set
of all hand location space neurons. Furthermore, the terms
”node” and ”neuron” will be used in an interchangeable
fashion, as nodes are part of neuronal networks. The activ-
ity of node n is denoted by an.

Location Goal Reaching in Detail
For a given target X ∈ R2, the neuron l∗ ∈ L being near-
est to X is determined. Then, the correlations (weights
from the learned inverse kinematic) are used to activate cor-
responding posture nodes. As the mapping encodes full
redundancy, there may be many posture neurons having
significant correlations. Our reference approach considers
all posture neurons having a correlation weight greater or
equal to the correlation threshold τ (τ = 0.15 has shown
to be a good choice) and induces external activity aextp to
posture neuron p ∈ P by

aextp = wp,l∗ · ξ + 1, if wp,l∗ ≥ τ, (1)

with wp,l ∈ [0, 1] being the learned correlation weight
(mapping location- with posture-space neurons) between
p and l. Thus, a good portion of neurons is ignored and a
manifold of interesting postures is activated. The constant
factor ξ applied to the weight is set to 0.3.

The induced activity is then propagated through the net-
work using the following model-based state value learning
rule (according to [Butz et al., 2010])

ap ← max(aextp ; γ · max
q∈N(p)

(aq)), (2)

where N(p) denotes the set of neurons being neighbors of
neuron p. The learning rule thus encodes either the own ex-



Table 1: Performance of location goal reaching (702 start-target combinations) using the setups STD (standard setting),
1ACT (activating only the best node in location space), ALLACT (activating all nodes in location space), NNEM (check for
new node after every movement). See text for details about the configurations.

Measurement STD 1ACT ALLACT NNEM
Successfully reached 676.7 597.5 679.0 628.1
Quality of path (QoP) 2.46 4.09 10.50 3.10
Average #steps needed 44.7 65.8 246.2 56.6
Median #steps 36.5 61.8 126.0 38.3
Standard deviation #steps 52.1 43.8 336.8 128.3

ternal activity aextp or the activity of the most active neigh-
boring neuron. The parameter γ is a constant discount fac-
tor, set to 0.7 to accord with ξ, which is set to 0.3 in (1).
In this way, propagated activity will always be smaller than
externally induced activity from task space.

The reaching process uses the proprioception of the arm
to determine which posture neuron is currently the closest.
This is denoted as the arms’ current node. Given the arm’s
current node, the system considers all neighboring nodes
and attempts to move in the direction of the most active
neighbor node. This is done until the arm has reached the
actual target.

Inhibition Once a node has been visited by the arm, it
gets inhibited, in order to make it less interesting for the
arm to aim at the same posture again. Hence, loops where
the arm moves back and forth are avoided effectively. Also
in general it seems reasonable to avoid the reaching of the
same postures with the arm within one goal-directed move-
ment. A similar mechanism was also used in TGNG [Butz
et al., 2010].

Transitioning to neighbor nodes At every time step the
arm is at a specific node and tries to move to the best neigh-
bor node. An important concept is how to actually transi-
tion the state of the arm to the next node. The most straight
forward approach is to check after each movement which
node in the posture space network is nearest to the arms’
new proprioception. Analyzing the behavior showed that
in many cases the arm does not reach the neighbor node it
originally aimed at. Often a node in between is encoun-
tered and becomes the new current node. In consequence,
the arm has to do new planning again and the trajectories
in turn become more turbulent. Such nodes in between are
not necessarily connected to the node the arm came from
and the neighbor it wants to move to, as connections are
established depending on the movements made during the
learning process. In effect, undesired erroneous behavior
may occur.

To avoid this behavior, we estimate the approximate dis-
tance d the arm has to travel when starting at node v and
aiming at neighbor node w. Searching for a new current
node is now only done if the distance moved since starting
at v is ≥ d. The benefit of this approach is that movements
are becoming much smoother overall and the arm jumps
less between near nodes. Additionally, lots of searches for
the current nearest node are omitted, which is particularly
useful when the posture network is very dense.

3 Evaluation of the Current Performance
To evaluate the current performance we focus on reaching
hand location goals. 702 different start-goal combinations

were chosen randomly to test the behavior of the arm. Be-
fore trying tor reach targets, the system executes the self-
supervised learning process for T = 100, 000 time steps.
Within each step one smooth movement of the arm is exe-
cuted, the space representations (neural networks) are up-
dated, and forward and inverse kinematics are learned. No
obstacles were placed within the environment for the main
parameter evaluations. In order to decrease the influence of
random learning movements, if not reported differently, all
results presented are average values from 100 runs, each of
which was tested on the identical 20 sets of 702 start-goal
combinations.

We evaluated the system with the aim of revealing pa-
rameter dependencies and robustness. Thus, we first vary
several crucial parameter settings revealing the respective
parameter influences. After that, we illustrate the capabil-
ity of the arm to avoid obstacles. Finally, we show one
slightly more involved run, in which case more than 99%
of all location goals are reached successfully.1

3.1 Goal-based Neural Activation
Table 1 shows the performance of goal directed behavior
of the arm. We present the average number of successfully
reached targets (of 702 in total) along with measurements
regarding the quality and length of the path taken. The lat-
ter values are only considered for successful movements.
The quality of path (QoP) is defined as the ratio of the ac-
tual distance moved to the optimal distance, with the op-
timal distance being the Euclidean distance from start to
target location.

The reference approach (STD) induces activity to a man-
ifold of suitable posture neurons, activating each of them
with an external activity close to one (slightly graded de-
pendent on the strength of the learned connection weights).
Note that the system does not reach all targeted locations
because we stop the goal reaching and count the trial as a
failure when the highest activated node in posture space is
reached but this node is not close-enough to the targeted
goal. If the trial was not stopped in this case, the system
typically reaches all 702 nodes eventually (due to the neural
inhibition mechanism), but the quality of the path degrades
strongly.

The baseline approach (1ACT) considers the results
when only the strongest connected node in posture space
is activated by the task space goal node. In this case, the
redundant mapping is fully disregarded; the arm simply
attempts to reach the neuron with the highest connection

1If not stated differently, the parameters of the system were set
as follows: TGNG node creation thresholds: θP = .4; θL = .2;
TGNG node parameter adaptation value: εP = .075; εL = .2.
Hebbian mapping learning parameters: learning rate α = .15,
trace value λ = .6, decelerating learning rate .99.



(a) Influence of learning rate parameter α.

(b) Influence of activity trace parameter λ

(c) Influence of posture space TGNG threshold parameter θP .

(d) Influence of location space TGNG threshold parameter θL.

Figure 2: Parameter influences on goal-reaching and quality of path performance.



weight from task space. The evaluation results show, that
less goals are reached and the average distance moved to
reach goals is larger using this configuration. This clearly
shows, that the information encoded in the mapping is in-
deed useful. It activates a whole manifold of posture nodes
and nicely handles redundancy.

In the all activated (ALLACT) case, all posture nodes
that are connected to the goal location neuron are acti-
vated. The evaluation demonstrates (see Table 1) that the
goal reaching performance of the arm gets worse using this
configuration. Even though most goals are finally reached,
the quality of the reaching movement is really bad com-
pared to the other configurations. This is because neurons
in joint space are activated that are hardly anywhere close
to the goal location – thus the arm moves through this broad
goal manifold in posture space rather randomly, yielding a
much worse QoP.

As explained in Sec. 2.2 our reference model does not
search for a new current posture node after each executed
movement step. NNEM denotes the alternative approach
estimating a new nearest posture node after each step (as
was done previously in TGNG [Butz et al., 2010]). The
evaluations of Table 1 clearly show that this approach is
leading to worse results. All quality measures get worse,
particularly the much higher variance in the steps needed
suggests that there are cases where the arm is getting lost
in some loops or unsuitable detours. Note however, that
the approximation of the distance to travel before making
a transition may in other representation spaces not be that
easy to estimate. For example many obstacles or frequently
changing environments can be a problem.

3.2 Parameter Influence
Besides these goal-directed neural activations, we also pur-
sued a more involved study of parameter learning influ-
ences. In the following, we explore influences of the learn-
ing rate and the trace parameter of the Hebbian learning
mechanism, as well as of the threshold parameter of TGNG
for learning the neural location and posture populations.

Hebbian Learning Parameters
The learning rate parameter α determines how fast and
aggressive the mapping weights between task and pos-
ture space are adjusted. Learning the inverse mapping is
done via the Hebbian feedback learning rule [Carpenter and
Grossberg, 1991]:

∆w = α · ap · (al − w) (3)

where w is the current weight between node p ∈ P and
location node l ∈ L and ∆w is the change of the weight in
the current learning step. ap denotes the activity trace of p
and al the activity of l.

Varying the parameter between 0.04 (very slow learning
process) and 1.0 (immediate weight changes) shows that a
rather low learning rate between 0.1 and 0.3 is well-suited
(cf. Fig. 2(a)). Higher values do not necessarily lead to
much less goals reached, but the quality of path gets worse.
Overall, however, the learning rate has a rather small influ-
ence on the whole system, if within a reasonable, moderate
range.

The parameter λ defines the length of the activity trace,
when learning the weights of a mapping between posture
and location space. The rule to compute the activity trace
an of node n is defined as

an = (1− λ) · aoldn + λ · anewn , (4)

where aoldn is the activation of n in the previous step and
anewn the newly induced activation in the current time step.
The activity trace aims at encoding movement trajectories.
Thus, nodes visited previously can also be correlated to cur-
rent nodes (from other representation spaces). Setting λ to
1 means that there is no activation trace at all.

The results shown in Fig. 2(b) suggest, that a medium
lambda parameter≥ 0.4 is suitable, in order to have a good
QoP. Having a really long trace (low λ), the resulting map-
pings are lacking quality. Having no trace on the other hand
seems to be a reasonable option. At least the variables ana-
lyzed here are not suffering from the absence of the activity
traces.

Thresholds of TGNG Networks
The threshold parameter(s) of the Time Growing Neural
Gas networks (TGNGs) [Butz et al., 2010] have a huge
influence on the general performance. A lower (error)-
threshold means that the network will have higher density
because new nodes are inserted more frequently.

Fig. 2(c) shows the influence of the posture threshold
θP and the location threshold θL. Generally, with a lower
threshold parameter θP more goals can be reached success-
fully. But having θP < 0.4 leads to a significantly worse
average quality of path. Further evaluation showed, that
for θP < 0.4 the standard deviation of the average num-
ber of steps needed to reach targets also increases signifi-
cantly. With more nodes in posture space the arm has more
movement possibilities and the probability that it looses
the optimal direction for some steps increases. Moreover,
the number of updates per connection decreases when a
denser network is grown. Another important considera-
tion at this point is the proper choice of θL depending on
θP and vice-versa. The densities of the networks should
be somewhat comparable to ensure proper mappings be-
tween them. While this is a rather experimental task at this
point, it appears that the densities can be increased signif-
icantly for both networks without getting bad behavioral
results. However, the computation-wise efficiency wors-
ens with decreasing θP as the number of nodes increases
quite rapidly (approximately 4000 nodes for a threshold of
0.3 compared to 2000 nodes with the threshold set to 0.4).
Moreover, the number of learning iterations necessary to
develop a proper kinematic mapping and to associate suffi-
ciently accurate motor codes increases with increasing den-
sity of the networks.

The location TGNG threshold parameter θL has a similar
influence. With increasing θL, less goals can be reached.
The quality of path gets worse with increasing θL too. But
for lower values like 0.15 and 0.20 the difference is not
really significant.

Obstacles
The system is also able to handle obstacles within the en-
vironment. To avoid crashing into them, neurons near and
within obstacles are simply inhibited. Moreover, the in-
verse kinematics model provides information about pos-
tures that are possibly causing crashes, which are also
inhibited so that no reward can be propagated through
obstacle-based inhibitions. Fig. 3 shows typical trajecto-
ries of the arm when reaching a target, pointing out differ-
ent trajectories chosen due to an obstacle.

Reliable Goal Location Reaching
Seeing that the presented results so far have not reached
all goal locations robustly, we ran slightly more involved
runs with the TGNG threshold parameters set to θP = .2;



(a) Without obstacles (b) With two obstacles

Figure 3: Two reaching movements, (a) without obstacles and (b) with two obstacles (red squares). The arm has to move
its end effector to the location goal target (small red circle). The trajectory taken by the arm is visualized in light gray
color. The resulting posture when the target was (nearly) reached is shown in blue. Due to the obstacles in (b) the resulting
trajectory differs, effectively avoiding crashing into the upper obstacle.

Figure 4: With even lower TGNG thresholds, the networks grow bigger and the target reaching performance also reaches
close-to 100% even when reaching for location targets.

θL = .05 for 500, 000 learning iterations. All other param-
eters were set to the standard settings. Fig. 4 shows that
with these settings nearly all location goals are reached.
The results also confirm that posture goals are easier to
reach and are in all cases reached reliably. Moreover, the
results also show that the network sizes grow significantly.
Clearly the posture network is much larger due to the 3D
angular space being covered in contrast to the 2D location
space. When considering the path qualities achieved, Fig. 5
shows that the path does not become fully straight. The per-
formance with respect to posture space goals indicates that
the motor encodings in the neural connections are not per-
fect. Moreover, due to the focus on the next best node, the
path cannot be fully straight. Low-pass filters in the motion
generation may alleviate this problem. The location space
performance is even worse. In this case, though, the sys-
tem attempts to generate a straight path in posture space,
not in location space. Thus, the measure confirms progres-
sive learning but it is not an absolute performance measure.

In sum, the results show that the overall system is able to
reach all goals in posture space as well as in location space,
even though all representations and associations between
these representations were learned from scratch learning
from uncontrolled, random motions. While the path op-
timality may be improved further, it has to be kept in mind
that the system currently blindly executes each movement

Figure 5: Also the path quality improves when a larger net-
work is learned. Note that the system always attempts to
move straight in posture space - thus the path quality for
location goals has to be taken with a grain of salt. Nonethe-
less, there is definite room for improvement when consid-
ering the path quality results.



without considerations of the previous one. Thus, inte-
grating successive motion vectors may be able to solve the
challenge of generating more smooth and straight paths to
goals. Nonetheless, the results concerning obstacle avoid-
ance have confirmed that the system is indeed able to gener-
ate dexterous behavior, having learned its body model fully
from scratch.

4 Conclusion
The results presented in this paper confirm that the combi-
nation of TGNG with Hebbian learning and model-based
RL works rather effectively. However, clearly learning
takes a rather long time and the final path quality is not opti-
mal. Note, however, that learning was based on completely
random movements. Others have shown that goal-babbling
from early on can improve the speed of learning signifi-
cantly [Rolf et al., 2011]. Moreover, active information
seeking, that is curious behavior [Oudeyer et al., 2007],
which was included in the TGNG algorithm [Butz and Reif,
2010], may be included in the current system to speed-
up learning even further by essentially acting information-
oriented. In this study, however, we refrained from utilizing
such techniques to reveal a baseline system performance.

Besides curiosity, other motivations may be included
to explore the external environment further once the arm
model is sufficiently accurate. Forward kinematic map-
pings can also be learned along similar lines, allowing the
anticipation of action consequences in posture space as
well as in task space. Such anticipatory capabilities may
be used for filtering incoming sensory information, acting
based on internal expectations, as well as for forward plan-
ning. Finally, we intend to use this learning approach to
learn the population encodings and mappings in the mod-
ular modality frame (MMF) model [Ehrenfeld and Butz,
2013]. MMF modularizes the SURE REACH approach
yielding a body model with maximally three dimensional
spaces. However, currently no structural learning takes
place in MMF. Due to this dimensional restriction in MMF,
the combination of the utilized learning techniques with
MMF promises to yield a system that is able to learn a full
seven degree of freedom human arm model or even a full
human body model in 3D space. Future research will need
to investigate the capabilities of generating dexterous be-
havior within such a learned, distributed body model.

Acknowledgments
Funding from the Emmy Noether program (German Re-
search Foundation, DFG, BU1335/3-1) is acknowledged.
Moreover, the authors like to thank the Cognitive Model-
ing team for their support.

References
[Bernstein, 1967] N A Bernstein. The co-ordination and

regulation of movements. Pergamon Press, Oxford,
1967.

[Berthier et al., 2005] N. E. Berthier, M. T. Rosenstein,
and A. G. Barto. Approximate optimal control as
a model for motor learning. Psychological Review,
112:329–346, 2005.

[Butz and Reif, 2010] M. V. Butz and K. L. Reif.
Motivated TGNG: Algorithm and performance eval-
uations. Technical Report CoboslabY2010N001,

COBOSLAB, Department of Psychology, Uni-
versity of Würzburg, Würzburg, Germany, 2010.
http://www.coboslab.psychologie.uni-wuerzburg.de.

[Butz et al., 2007] M. V. Butz, O. Herbort, and J. Hoff-
mann. Exploiting redundancy for flexible behavior: Un-
supervised learning in a modular sensorimotor control
architecture. Psychological Review, 114:1015–1046,
2007.

[Butz et al., 2010] M. V. Butz, E. Shirinov, and K. L. Reif.
Self-organizing sensorimotor maps plus internal moti-
vations yield animal-like behavior. Adaptive Behavior,
18(3-4):315–337, 2010.

[Carpenter and Grossberg, 1991] G. A. Carpenter and S.
Grossberg. Pattern Recognition by Self-Organizing Neu-
ral Networks. MIT Press, Cambridge, MA, 1991.

[Ehrenfeld and Butz, 2013] S. Ehrenfeld and M. V. Butz.
The modular modality frame model: Continuous body
state estimation and plausibility-weighted information
fusion. Biological Cybernetics, 107:61–82, 2013.

[Herbort and Butz, 2007] O. Herbort and M. V. Butz. En-
coding complete body models enables task dependent
optimal behavior. Proceedings of International Joint
Conference on Neural Networks, Orlando, Florida,
USA, August 12-17, 2007, pages 1424–1429, 2007.

[Herbort et al., 2007] O. Herbort, D. Ognibene, M. V.
Butz, and G. Baldassarre. Learning to select targets
within targets in reaching tasks. 6th IEEE Interna-
tional Conference on Development and Learning, ICDL
2007:7 – 12, 2007.

[Jordan and Rumelhart, 1992] M. I. Jordan and D. E.
Rumelhart. Forward models: Supervised learning with
a distal teacher. Cognitive Science, 16:307–354, 1992.

[Kuperstein, 1988] M. Kuperstein. Neural model of adap-
tive hand-eye coordination for single postures. Science,
239:1308–1311, 1988.

[Oudeyer et al., 2007] P.-Y. Oudeyer, F. Kaplan, and V. V.
Hafner. Intrinsic motivation systems for autonomous
mental development. Evolutionary Computation, IEEE
Transactions on, 11:265–286, 2007.

[Peters and Schaal, 2008] J. Peters and S. Schaal. Rein-
forcement learning of motor skills with policy gradients.
Neural Networks, 21:682–697, 2008.

[Rolf et al., 2011] M. Rolf, J. J. Steil, and M. Gienger.
Online goal babbling for rapid bootstrapping of inverse
models in high dimensions. IEEE Int. Conf. on Devel-
opment and Learning and on Epigenetic Robotics, pages
1–8, 2011.

[Sigaud and Peters, 2010] O. Sigaud and J. Peters, editors.
From Motor Learning to Interaction Learning in Robots.
Springer, 2010.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto.
Reinforcement learning: An introduction. MIT Press,
Cambridge, MA, 1998.

[Whitney, 1969] D. E. Whitney. Resolved motion rate con-
trol of manipulators and human prostheses. IEEE Trans-
actions on Man-Machine Systems, 10:47–53, 1969.


