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Abstract
We show that a model for drought stress level
classification of tobacco leaves can be learned
from measurement data. The data was acquired
using a sheet-of-light measurement system de-
veloped at the Fraunhofer Institute for Integrated
Circuits IIS. Spatial attributes like length, width
or bending were extracted by fitting a parameter-
ized leaf model to the measurement data. The at-
tributes were transformed to simple attribute vec-
tors describing relevant aspects of plant growth
and stress evidence. The resulting attribute vec-
tors were used to train decision trees, neural net-
works and linear regression classifiers. To pro-
vide a broad range of data, plants were assessed
in a planned measurement campaign. Stress was
induced by cutting off the water supply to simu-
late drought. Evidence for drought stress could
be recognized from the data. Classification of
whole plants yielded better results than classifi-
cation of single leaves.

1 Introduction
A highly controlled production of plants in greenhouses or
phytotrons (e.g. automated production of plants for phar-
maceutical applications or high-throughput plant pheno-
typing for breeding) requires fully automated systems for
the continuous monitoring of the growth conditions and
the plant status. While simple factors like climate, nutri-
tion and water supply can be controlled with simple reac-
tive systems, more complex aspects like the detection of
stress, diseases or pest infestation require intelligent sys-
tems which are able to detect anomalies in plant growth.
To accomplish this, a measuring system must be designed
which is able to capture the necessary features of plant
growth in a non-destructive manner. Furthermore, a clas-
sification model is required which provides information
about how to assess the measurement data.

The aim of our work was to evaluate whether it is possi-
ble to construct such a classification model directly from
measurement data without additional expert knowledge.
As part of its internal funding program the Fraunhofer
Future Foundation is currently promoting the Malaria-
Vaccines project of the Fraunhofer IME, Aachen. Through
the participation of two additional Fraunhofer Institutes
(IPT and IIS) the project synergistically combines exper-
tise from the life sciences, engineering and medical tech-
nology fields. One of the major project goals is to develop
an automated production facility for the GMP-compliant

manufacturing of IMEs novel malaria vaccine candidates
in tobacco plants. The task for our work was to model the
behavior of tobacco plants when exposed to drought stress.
From a machine learning point of view, this is a classifi-
cation task of distinguishing stressed plants from regularly
watered plants. Drought was chosen as the stress type of
interest since it is easy to simulate by cutting off irrigation.
In a measurement campaign designed for this work, a set of
tobacco plants was measured over the course of one week.
To trigger drought stress, the plants were cut off from water
supply according to a fixed time schedule. Plant data was
acquired using a sheet-of-light measurement system devel-
oped at the IIS in the Department for Contactless Test and
Measuring Systems.

Furthermore, a biologist was asked to assess the plants’
stress level according to the measurement data. These rat-
ings served as classification labels for supervised machine
learning techniques. The measurement data was reduced to
attribute vectors describing essential features of the physi-
cal shape of a plant. This was done using a parameterized
leaf model developed at the Fraunhofer IIS.

Combined with the labels provided by the expert rating,
these attribute vectors form an input data which is compat-
ible with standard machine learning techniques. Decision
trees, neural networks and linear regression were used for
classification to evaluate which technique is suited best for
the data provided.

2 Acquisition of plant data
2.1 Measurement campaign setup
The data used for this work was acquired in a measure-
ment campaign carried out at the IME. Over the course
of one week, tobacco plants of different stress states were
measured on a regular basis. The test group consisted
of 50 Nicotiana tabacum plants grown hydroponically in
stonewool blocks. They were sowed in five groups of ten
plants in a weekly sequence. The plants were cultivated in
a phytotron under LED light in a nutrient film technique
(NFT) system at 25◦C during the light phase (16h) and
22◦C during the dark phase (8h) with a constant relative
humidity of 70%. During the light phase, the plants in
the gullies were periodically supplied with nutrient solu-
tion (15 min flow / 45 min off). The measurements were
started when the last group reached an age of three weeks.
Thus the plants ranged in three to seven weeks of age at the
beginning of the measurements. Each day, all plants were
measured two times. The first measurement was carried out
in the morning, the second one in the afternoon.

To accomplish objective states of drought stress, single
plants were cut off from water supply at fixed points in



time during the measurement campaign. At each cut-off
point, two more plants of each age group were exposed
to drought stress. Once a plant was separated from irri-
gation, it was kept unwatered until the measurement cam-
paign was finished. The exact water cut-off points were
distributed over the week in such a way that every three
measurements, two more plants were cut off from irriga-
tion. Since there were 14 measurements, this scheme was
set off by one measurement to define objective start and end
points. This means that at the first measurement no plant
was exposed to drought stress to acquire an unstressed mea-
surement of each plant individual as a reference point for
further changes over the course of the following measure-
ments. At the last measurement, there was no additional
cut-off point included to keep two watered plants as a ref-
erence with respect to the stressed individuals.

2.2 Measurement system
The measurements were carried out using a sheet-of-light
measuring system developed at the Fraunhofer IIS. This
system projects laser light onto the plant, which is then
captured by several cameras. The cameras are positioned
below, above and in front of the plant. In the measuring
process, the plant is turned about 360 degrees to expose all
plant parts to the cameras. During the rotation, the distance
from the plant to the camera is measured by tracking the
positions of the points were the laser light was reflected on
the plant’s surface. The result is a 3D point cloud of the
plant surface. An example for the result is given in figure
1.

Figure 1: Picture of a 52 days old tobacco plant (left side)
and the corresponding 3D reconstruction (right side). Each
leaf is shown in a different color.

2.3 A parametric leaf model
Since most conventional machine learning algorithms re-
quire data in the form of attribute vectors, the 3D point
clouds were further processed to acquire relevant aspects
of plant growth in the form of attribute-value pairs. Each
attribute stands for a certain spatial feature of a leaf, e.g. the
length, the width, the bending angle towards the ground or
its widthwise bending. Figure 2 illustrates one of the bend-
ing attributes.

The attribute extraction was done in two steps. In the
first step, the plant was segmented into leaves using a spa-
tial clustering algorithm. In the second step, attribute ex-
traction was done using a leaf model fitting algorithm. In
the course of this algorithm, a model leaf is transformed
until it fits the segmented leaf. From the resulting transfor-
mation the values of the attribute vector can be calculated.
Further details of the attribute extraction methods can be
found in [Uhrmann et al., 2013]. An example of the result
can be seen in figure 3.

Figure 2: Example showing the default model with no
bending (left side) and a model with a slight bend towards
the ground (right side).

Figure 3: The result of the model fitting algorithm. Each
leaf (shown in different colors) has a model leaf fitted to it.

2.4 Expert ratings
A biologist rated the stress level of the measured plants to
create class labels for supervised classification algorithms
from human expert knowledge. To avoid external influ-
ences the ratings were performed in a controlled exper-
iment situation. The expert was asked to assign stress
classes to each plant measurement. The classes were no
stress, moderate stress and strong stress. This simple 3-
choice distinction was chosen to keep the ratings compara-
ble and as objective as possible. A more complex scale, for
instance an estimation of stress measured in days of expo-
sure, would suffer from personal rating preferences of the
expert.

For each measurement the expert was presented a side
view photo of the plant. The expert was asked to rate each
of the 700 measurements. To conceal the pattern to which
the plants were stressed during the measurements, the plant
images were shown in a random order. Additionally, the
age of the plant in days was provided to the expert. The
resulting class labels were assigned to the corresponding
leaf attribute vectors by extending each vector by a class
attribute whose value was the classification of the respec-
tive plant.

3 Classification of tobacco leaves
3.1 Preprocessing
Processing the raw measurement data to attribute vectors
describing the leaf shape consists of three steps: Plant mea-
suring and reconstruction, leaf segmentation, and model fit-
ting. Each of these processing steps may induce noise into
the data, which is described in the following.

1. In the measuring and reconstruction step it can hap-
pen that parts of a leaf cannot be captured. The main reason



for this are occlusions, e.g. upper leaves that cover up parts
of lower leaves and prevent the laser beams from reaching
all parts of the plant surface. This might result in gaps or
clipped leaves which is challenging for the following pro-
cessing steps.

2. In the segmentation step there is a possibility that a
leaf is not recognized, e.g. because it is to close to another
one. In that case, the resulting leaf mesh would contain two
leaves. This is problematic because the model fitting algo-
rithm is designed for an input mesh which contains only
one single leaf. The opposite might also be the case: More
than one leaf is detected where there should be only a sin-
gle one. This might happen if there are big gaps in the point
cloud, which virtually split the leaf into several parts. The
resulting meshes would contain parts of a single leaf, which
are all assumed to be whole leaves. Both effects add noise
into the data since the model fitting algorithm is not able to
detect inconsistent input meshes.

3. In the model fitting step, the major source for errors is
invalid input data from the previous processing steps. An
example for this is given in figure 4. The point cloud data
of the small leaf in the front contains gaps, which causes
the model fit to fail. The resulting attribute vector for this
leaf will therefore contain errors and reduce the quality of
the classification.

Figure 4: An example for an invalid model fit. The small
leaf in the front was not fitted correctly due to gaps in the
point cloud data.

Avoiding these errors in advance is difficult. The pivot
is the measuring and reconstruction step, because errors in
this step propagate through all subsequent steps. However,
measuring and reconstruction of plants is very challenging.
Due to the complex shape of plants there is no way to avoid
occlusions in all cases. Therefore it is probably impossible
to design reconstruction algorithms which are able to avoid
gaps and clippings completely.

Consequently, data cleaning is required to filter out erro-
neous attribute vectors before classification. In the course
of our work, two types of cleaning were applied to the data.

Firstly, the distance between the model leaf and the orig-
inal point cloud was taken as an error indicator. This was
measured as the accumulated distance between each point
of the model leaf mesh and the nearest point of the recon-
structed leaf mesh. Each attribute vector which showed a
very large distance value was deleted from the data.

Secondly, each attribute vector was checked for incon-
sistent values with respect to correlated attributes. As an
example, figure 5 shows a plot of all leaf attribute vectors,
showing the leaf length on the x-axis and leaf area on the

y-axis. There is a correlation between the scale and the area
of a leaf. All leaf attribute vectors which exceeded a fixed
threshold with respect to the ratio between leaf length and
area were considered as outliers. The failed model fit in
figure 4 is a typical example for how this outliers emerge.
In that case, the model leaf was deformed to a needle-like
shape. Therefore the ratio between scale and area is too
small and the attribute vector can easily be identified as an
outlier.

Figure 5: The correlation between the area and the length
(scale) of a leaf. Outliers are marked in red.

3.2 Classification and evaluation
Decision trees, neural networks and linear regression were
used for classification to evaluate which of these classifiers
is suited best for the data. We used RapidMiner 5.3 for
the data mining. Each classifier was tested using cross-
validation with three subsets of validation. The input data
was weighted by stratification, since healthy plants out-
numbered moderately and strongly stressed plants.

Different approaches to learning have been tested, which
differed in two aspects.

Firstly, the approaches differed in the number of classifi-
cation classes. Tertiary classification approaches included
the classes healthy, moderately stressed and strongly
stressed. Moreover, binary classification approaches were
tested, in which the class moderately stressed was omitted.

Secondly, the approaches used different input data. Ap-
proaches on leaf level were based on the attribute vectors
corresponding to the respective leaves. On plant level,
some adaptations were required, since no global plant at-
tributes were provided by the preprocessing steps. There-
fore the attribute vectors of single leaves were transformed
to attribute vectors describing whole plants. This was done
by creating plant attributes containing the mean values of
all corresponding leaf attributes. Furthermore, global plant
attributes were calculated, e.g. height, radius and the total
leaf surface area.

Regarding all aspects, there are four different approaches
which were carried out. For each approach, the already
mentioned classifiers were applied. Therefore 12 classifi-
cation results were achieved. Table 6 shows the respective
accuracy rates.

The first approach was performed using leaf attribute
vectors as input data and performing a tertiary classifica-
tion. The best accuracy rate was 52.04% using linear re-



tertiary,
leaves

binary,
leaves

tertiary,
plants

binary,
plants

decision tree 43.77% 52.28% 75.07% 93.69%
neural network 45.40% 72.02% 82.46% 97.08%

linear regression 52.04% 81.81% 82.35% 95.53%

Figure 6: The results of the classification, showing the ac-
curacy rates for each learning approach.

gression. However, this poor result is reasonable. As it
was explained in section 2.4, leaf attribute vectors were la-
beled with the rating of the whole plant. However, tobacco
leaves show different behavior when exposed to drought
stress, depending on the type of the leaf. A tobacco plant
tries to retain young, strong leaves as long as possible. Con-
sequently, older leaves show stress symptoms earlier than
younger leaves. Since the leaf data was labeled with the
ratings of the whole plant, the poor result of the first ap-
proach can therefore be explained because of discrepancies
between the labels and the data.

The second approach was carried out by performing bi-
nary classification on the leaf attribute vectors. The reason
was to assure that stress is recognizable in the leaf data at
all. If the intermediate class is omitted, there is more tol-
erance for the definition of class boundaries, which allows
for an easier classification. This second approach yielded
much better results. Accuracy rates up to 81.81% could be
reached using linear regression. Consequently stress symp-
toms can be recognized from the data, but the labels pro-
vided are not suitable for tertiary classification on the leaf
level.

In the third approach tertiary classification was per-
formed on the level of whole plants, which yielded much
better results. An accuracy rate of 82.35% could be
reached, using linear regression. Since this was a tertiary
classification, this is a considerable improvement compared
to the first and second approach. Furthermore this confirms
that the stress state of a plant cannot be classified by con-
sidering single leaves only.

The fourth approach was a binary classification on the
plant level. Is was carried out to check whether the binary
classification yields considerably better results compared
to the tertiary classification. The task was almost solved by
neural networks, with an accuracy rate of 97.08%. Con-
sequently, tertiary classification is more challenging than
binary classification. One of the possible reasons for this is
explained in section 4.

It is worth to note that decision trees performed worse
than any other classifier in all approaches. This indicates
that decision trees seem to have a learning bias which is
disadvantageous for the classification of this kind of data.
This might be due to the fact that the input data contains
only continuous values.

4 Discussion and Outlook
Since our work in this field is still in progress, there are
plenty of open points and ways to proceed. In order to
further increase accuracy rates, some effort must be put into
the reduction of errors in the preprocessing steps, since they
are propagated through all subsequent processing steps and
are difficult to be recognized in the cleaning step.

Furthermore, other approaches to extract plant attributes
from the measurement data might yield different results
than our model fit approach. For example, Lin et al. [2013]

use a simple function model describing the shape of the
leaf margins. It is possible that such an approach to leaf
modeling might also provide suitable data for classification
tasks.

Moreover, there are also different ways in which the
transition from leaf to plant level classification could be
realized. In our approach, plants were mainly classified
based on the mean values of the corresponding leaf at-
tributes. Another possible approach would be to perform
pre-classification on the leaf level, and a second classifica-
tion on the plant level. This might yield better results since
not every leaf of a plant would be considered individually,
whereas the smoothing effects of calculating mean values
is avoided.

Another critical point is the reliability of the expert rat-
ings. As it was stated in section 2.4, the classification la-
bels stem from interviewing a human expert. These ratings
might vary in precision due to the subjectivity of human
judgments. As our fourth classification approach showed,
adding an intermediate class between healthy and stressed
plants adds plenty of complexity to the classification task.
If this is due to vague intermediate classifications by the
expert, a machine learner which is trained with this data
might therefore never be able to yield optimal results.

Consequently the reliability of the expert ratings must be
validated. A possible approach would be to repeat the rat-
ings with the same data but different experts. If the ratings
match, this is an indication that human experts are reliably
able to distinguish stressed from healthy plants.

5 Related work
As far as we are aware, there is only little related work in
the field of stress classification of plants by machine learn-
ing methods. In [Wu et al., 2007], a leaf recognition al-
gorithm is described using probabilistic neural networks
based on leaf images acquired by scanner or digital cam-
eras. Such an approach might be adapted to distinguish
stressed from healthy plants.

In [Chaerle and Van Der Straeten, 2001], a survey of sev-
eral techniques for monitoring plant health is provided, in-
cluding fluorescence imaging, thermal imaging and others.
These methods have the benefit that stress can be detected
earlier than with visual measurement systems since visible
changes in plant shape are already effects of biochemical
processes, which can be detected earlier with the described
methods. Therefore it would be worth to apply machine
learning techniques on the data provided by these methods
and compare the results with our work.

However, some of this methods are not applicable with
our framework since high throughput of single plants must
be assured. For instance, systems based on hyperspectral
imaging, like they are used in [Römer et al., 2012], are
not feasible in our context although they have successfully
been applied in the detection of drought stress.

6 Summary
We have shown that constructing a model for the impact of
drought stress on plant growth can be inferred from mea-
sured geometric leaf features using machine learning tech-
niques. These features are acquired using a sheet-of-light
measurement system. Such a system could be used to mon-
itor plant growth in greenhouses, as they are used in the
production of pharmaceutical products.



To build our model, we set up a measurement campaign
to acquire a broad range of data, extracted attributes of in-
terest from the spatial data and applied several machine
learning techniques to achieve a number of comparable re-
sults. In this measurement campaign, tobacco plants of the
species Nicotiana tabacum were measured on a regular ba-
sis and stressed according to a fixed schedule. Drought was
chosen as the stress type of interest since it is easy to simu-
late by cutting off irrigation. The measurement data was re-
duced to vectors of attribute-value-pairs describing essen-
tial features of the physical shape of a plant. This was done
using a parameterized leaf model developed at the Fraun-
hofer IIS. Combined with labels provided by expert ratings,
these attribute vectors form input data which is compatible
with standard machine learning techniques.

Classification on the level of single leaves yields poor
results (lowest accuracy: 43.77%) because the labels were
not appropriate for single leaf data. However, classifica-
tion on the level of whole plants yields good results with
accuracy rates up to 97.08%.

There are several ways to further increase classification
performance. For instance, further effort could be put into
the reduction of errors in the preprocessing step. Using dif-
ferent data sources or using other methods for the transition
from leaf to plant level might also yield better results.
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